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Elsewhere [i] we studied an ion-convection pump (ICP), a system consisting of a needle 
and a coaxial cylinder with a cylindrical channel, and constructed a model of the energy con- 
version process for calculating the pressure developed by the pump, depending on the geometric 
parameters of the flow section and the electrical characteristics of the supply voltage. The 
method used there, based on calculation of the average potential U(x, t), does not work for 
channels with a variable cross-sectional area S(x) of the flow section. 

In this paper we propose a modified analytic treatment, which is based on calculation of 
the average electric field strength E(x, t) and is intended for problems of optimization of 
the shape of the ICP collector electrode. The results of [i] follow from the formulas derived 
below for a particular case (for S(x) - const). 

i. Electric Field Strength in an Axisymmetric ICP. We consider an axisymmetric channel 
K of length L with a conducting lateral surface 6K and a metal needle on the axis of the chan- 
nel (Fig. i). The channel is filled with a viscous incompressible liquid; a voltage U(t) pul- 
sating with frequency m maintained between the needle and the surface 6K injects charges into 
the liquid near the needle and causes an electrohydrodynamic (EHD) flow. We find the average 
electric field strength during steady-state operation of the ICP, assuming laminar motion of 
the liquid. 

We use a nonstationary hydraulic approximation of the system of EHD equations for the ICP 
stage (see, e.g., [1-4]), 
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for the boundary condition 8E/St[x = 0 = 0. Here S(x) is the cross-sectional area of the 

pump channel; v = v(x, t) is the cross-sectional average velocity of the liquid; F i = Fi(x, t) 
is the cross-sectional area of the charge-exchange zone; p and p are the average density and 
pressure of the neutral component over the cross section Fi; E, U, q, and j are the average 
electric field strength, potential, charge density, and conduction current density over Fi; 
e0 and e are the electric and dielectric constants of the liquid; A is the hydraulic approxi- 
mation of the viscosity term in the Navier-Stokes equation; and b is the coefficient of ion 

mobility. 

The boundary condition 8E/Stlx = 0 = 0, being the main condition in the study of corona 

discharges in gases [5] and the analogous process in dielectric liquids [i, 3, 4], character- 
izes the effect of the intrinsic electric field of charge exchange on the electric field of 
the electrodes. 
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Fig. i 

We assume that the inertial forces of the liquid smooth out its velocity pulsations due 
to the periodicity of the supply voltage and, hence, 3(S(x)v)/~t is negligible. Equation (1.6), 
therefore implies the equation 

v(x) = . (x ,  t) = voSo/S(x) (Vo = v(O), So = S(O)). (1.7) 

The pulsation of the supply voltage causes the ions to move along the transfer zone in 
batches [6], whose velocity is of the order of v(x) [4]. Formalizing this in terms of the 
charge density q(x, t) or in terms of the electric relaxation frequency 

~(x, t) = bq/eeo, 
( 1 . 8 )  

we find that the function ~ is periodic in both arguments with periods 

T = 2a~o -~, X = cons t  T. 
( 1 . 9 )  

From Eqs. (1.2) and (1.4) we obtain 
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Suppose that J(x, t) is the average density of the total current over the cross section 
Fi(x). Then the expression in parentheses in formula (i.i0) is equal to FiJ and, therefore, 
we have 
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Introducing the notation ~ = FiE, q = 
(i.ii), we obtain 
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By virtue of the periodicity of ~ with periods (1.9) and the principle of averaging for 
hyperbolic equations (see, e.g., [7]) the solutions (1.12) converge to solutions of the aver- 
aged equation at a sufficiently high frequency ~ + =: 
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We find the solution of (1.1.3) with the boundary condition E(0, t) ~ E0, using the standard 
method of characteristics. The characteristic system of ordinary differential equations for 
(1.13) has the form 

d x  d u  
dt = ~ 1 - * (1o14) 
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We define two independent integrals of a given system. The first integral of (1.14) can be 
written as 

dy ( 1 . 1 5 )  
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0 

t h e  c h a n n e l  f rom x = 0 t o  x = x 0 .  Taking  ( 1 . 7 )  i n t o  a c c o u n t ,  we w r i t e  t h i s  as  

x 

0 

The second integral is the general solution of the linear equation 

(1.16) 
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and is found by the method of variations: 
t 
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Since u does not appear explicitly in the first integral, the general solution of (1.13) satis- 
fies t h e  f u n c t i o n a l  e q u a t i o n  

t 
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which contains the derivative of the smooth function f. Taking the boundary condition into 
account, we obtain 
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which is the asymptotic (relative to m + =) solution of Eq. (1.12) for the average field 
strength in an axisymmetric ICP. 

2. Calculation of APav" Comparison with Experiment. The first aspect of this study (as 
well as [i]) is the problem of explaining the experimental data [6] on the abrupt increase 
in the pressure drop Ap at certain values of the geometric parameters of the pump stage. The 
formula for averaging the field strength makes it possible to solve this problem, substitut- 
ing (1.17) into Eq. (i.i). 

At the same time, the present lack of a single generally accepted theory of charge forma- 
tion in a dielectric liquid and, therefore, the equations of the current-voltage character- 
istic for the ICP also required use of experimental data to calculate hp. Since the internal 
processes in the ICP stage are complex and there is no additional information about the structure of 
the viscous term of Eq. (i.i), we use the simplest hydraulic approximation. 

Integrating Eq. (i.i) with allowance for (1.7) and (1.17), we obtain 
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(~ is the hydraulic loss coefficient and v, is the characteristic velocity of the working 
medium). 

When the current density J0(t) at the end of the needle is known the optimization of the 
shape of the flow section of the pump channel (shape of the collector electrode) reduces to 
a study of the maximum of the functional (2.1) averaged over t. Suppose that the channel K 
has the form K z + K= (K I is a cone of angle ~ and length L K and K 2 is a cylinder of radius r d 
and length L0). In this case L = L K + L 0 (Fig. 2). 

We introduce the simplifying assumptions: i) the current i0(t) on the needle is approxi- 
mated well by the fundamental harmonic 

io(t) ~ Io cos ~t; 

2) the values of F i are determined by 

I x = O, 
f ~ =  IS(x), O < x < L .  

Taking  t h e  a s s u m p t i o n s  and f o r m u l a s  ( 1 . 7 )  and ( 1 . 1 5 )  i n t o  a c c o u n t ,  we o b t a i n  

T 
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( 2 . 2 )  

(2.3) 
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v d = v, is the velocity of the liquid in the cylindrical part of radius r d of the collector 
electrode. 

In Figs. 3 and 4 we compare the results of calculations of Ap from (2.3) (solid lines) 
with the experimental results (dash-and-dot lines) at a supply-voltage pulsation frequency 
f = i00 Hz for a silicon liquid with p = 850 kg/m 3, e = 2.4. In the calculation we took E 0 = 

107 V/m, the initial field strength at which discharge is initiated in the liquid, which was 
estimated from the results of experimental; determination of the initial voltage Uin for the 

given liquid, the results of analog simulation of the electrostatic field of the needle-cone 
system of electrodes by the electrolytic tank method, also including the results of [8] on 
the simulation of such an electrostatic field; r 0 = 0.i mm is the radius of the emitter elec- 
trode; rd = 0.75 mm is the radius of the receiving aperture of the collector; and = = 45 ~ is 
the angle between the generatrix of the cone and its height L K. 

The velocity v d in the receiving aperture of the collector was assumed to be equal to 
the corresponding flow rate of the working medium. The theoretical and experimental curves 
were plotted for constant values of the interaction parameter N, determined from N = LKS/V d 

and characterizing the number of interactions of charges with neutral molecules of the li- 
quid. 

The value of the electric relaxation frequency ~ was estimated from 

L H 

I 0 
S(=)' 

0 

where k = 0.68 + ~cot a is the empirical gain of the electric field, obtained from the results 
of analog simulation of the needle--cone electrode system by the electrolytic tank method. 

Comparison of the results of calculation from (2.3) with the experimental data shows that 
the calculated values of the pressure differ by less than 10% from the experimental values 
in the region of the optimum length of the collector cone. 

In conclusion, we thank V. I. Yakoblev for valuable comments and attention to our study. 
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